51 research outputs found

    Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces

    Get PDF
    In humans, the tactile perception of fine textures is mediated by skin vibrations when scanning the surface with the fingertip. These vibrations are encoded by specific mechanoreceptors, Pacinian corpuscules (PCs), located about 2 mm below the skin surface. In a recent article, we performed experiments using a biomimetic sensor which suggest that fingerprints (epidermal ridges) may play an important role in shaping the subcutaneous stress vibrations in a way which facilitates their processing by the PC channel. Here we further test this hypothesis by directly recording the modulations of the fingerpad/substrate friction force induced by scanning an actual fingertip across a textured surface. When the fingerprints are oriented perpendicular to the scanning direction, the spectrum of these modulations shows a pronounced maximum around the frequency v/lambda, where v is the scanning velocity and lambda the fingerprints period. This simple biomechanical result confirms the relevance of our previous finding for human touch.Comment: Addendum to: Scheibert J, Leurent S, Prevost A, Debr\'egeas G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 2009; 323:1503?6 3 pages, 1 figur

    Relaxation Tribometry: A Generic Method to Identify the Nature of Contact Forces

    Get PDF
    Recent years have witnessed the development of so-called relaxation tribometers, the free oscillation of which is altered by the presence of frictional stresses within the contact. So far, analysis of such oscillations has been restricted to the shape of their decaying envelope, to identify in particular solid or viscous friction components. Here, we present a more general expression of the forces possibly acting within the contact , and retain six possible, physically relevant terms. Two of them, which had never been proposed in the context of relaxation tribometry, only affect the oscillation frequency, not the amplitude of the signal. We demonstrate that each of those six terms has a unique signature in the time-evolution of the oscillation, which allows efficient identification of their respective weights in any experimental signal. We illustrate our methodology on a PDMS sphere/glass plate torsional contact

    MĂ©canique du contact rugueux et perception tactile

    Get PDF
    5 pages, 2 figuresNational audienceDans un contact entre solides rugueux, l'interface constitue la partie la plus déformable. Son comportement mécanique détermine les contraintes s'établissant dans les deux solides, ainsi que la dynamique de frottement. Deux nouvelles méthodes expérimentales, fondées respectivement sur une observation optique directe et sur l'utilisation d'un microcapteur de force MEMS, permettent de sonder la mécanique locale de ces interfaces. Le dispositif MEMS, qui est un analogue très rudimentaire de l'extrémité du doigt humain, nous a permis de proposer un rôle possible des empreintes digitales dans la transduction de l'information tactile

    Direct numerical simulation of the dynamics of sliding rough surfaces

    Full text link
    The noise generated by the friction of two rough surfaces under weak contact pressure is usually called roughness noise. The underlying vibration which produces the noise stems from numerous instantaneous shocks (in the microsecond range) between surface micro-asperities. The numerical simulation of this problem using classical mechanics requires a fine discretization in both space and time. This is why the finite element method takes much CPU time. In this study, we propose an alternative numerical approach which is based on a truncated modal decomposition of the vibration, a central difference integration scheme and two algorithms for contact: The penalty algorithm and the Lagrange multiplier algorithm. Not only does it reproduce the empirical laws of vibration level versus roughness and sliding speed found experimentally but it also provides the statistical properties of local events which are not accessible by experiment. The CPU time reduction is typically a factor of 10.Comment: 16 pages, 16 figures, accepted versio

    Probing the micromechanics of a multi-contact interface at the onset of frictional sliding

    Get PDF
    Digital Image Correlation is used to study the micromechanics of a multi-contact interface formed between a rough elastomer and a smooth glass surface. The in-plane elastomer deformation is monitored during the incipient sliding regime, i.e. the transition between static and sliding contact. As the shear load is increased, an annular slip region, in coexistence with a central stick region, is found to progressively invade the contact. From the interfacial displacement field, the tangential stress field can be further computed using a numerical inversion procedure. These local mechanical measurements are found to be correctly captured by Cattaneo and Mindlin (CM)'s model. However, close comparison reveals significant discrepancies in both the displacements and stress fields that reflect the oversimplifying hypothesis underlying CM's scenario. In particular, our optical measurements allow us to exhibit an elasto-plastic like friction constitutive equation that differs from the rigid-plastic behavior assumed in CM's model. This local constitutive law, which involves a roughness-related length scale, is consistent with the model of Bureau \textit{et al.} [Proc. R. Soc. London A \textbf{459}, 2787 (2003)] derived for homogeneously loaded macroscopic multi-contact interfaces, thus extending its validity to mesoscopic scales.measurements allow for the first quantitative test of Cattaneo and Mindlin (CM) classical model of the incipient sliding of a smooth interface. Small deviations are observed and interpreted as a result of the finite compliance of the rough interface, a behavior which contrasts with Amontons' law of friction assumed to be valid locally in CM's model. We illustrate how these measurements actually provide a method for probing the rheology of the rough interface, which we find to be of the elasto-plastic type.Comment: 11 page

    Statistics of the separation between sliding rigid rough surfaces: Simulations and extreme value theory approach

    Get PDF
    When a rigid rough solid slides on a rigid rough surface, it experiences a random motion in the direction normal to the average contact plane. Here, through simulations of the separation at single-point contact between self-affine topographies, we characterize the statistical and spectral properties of this normal motion. In particular, its rms amplitude is much smaller than that of the equivalent roughness of the two topographies, and depends on the ratio of the slider's lateral size over a characteristic wavelength of the topography. In addition, due to the non-linearity of the sliding contact process, the normal motion's spectrum contains wavelengths smaller than the smallest wavelength present in the underlying topographies. We show that the statistical properties of the normal motion's amplitude are well captured by a simple analytic model based on the extreme value theory framework, extending its applicability to sliding-contact-related topics

    History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework

    Get PDF
    To study the microscopic origins of friction, we build a framework to describe the collective behaviour of a large number of individual micro-junctions forming a macroscopic frictional interface. Each micro-junction can switch in time between two states: A pinned state characterized by a displacement-dependent force, and a slipping state characterized by a time-dependent force. Instead of tracking each micro-junction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. We show how this framework represents an overarching structure for important models existing in the friction literature. We then use it to study systematically the effect of the time-scale that controls the duration of the slipping state. We first find the steady-state friction force as a function of the sliding velocity. As the framework allows for a whole family of micro-junction behaviour laws, we show how these laws can be chosen to obtain monotonic (strengthening or weakening) or non-monotonic velocity dependence at the macroscale. By then considering transient situations, we predict that the macroscopic static friction coefficient is strongly influenced by the way the interface was prepared, in particular by the slip dynamics of the previous sliding event. We also show that slow slip spontaneously occurs in the framework for a wide range of behaviour laws.Comment: 20 pages, 10 figure

    On the speed of fast and slow rupture fronts along frictional interfaces

    Get PDF
    The transition from stick to slip at a dry frictional interface occurs through the breaking of the junctions between the two contacting surfaces. Typically, interactions between the junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasi-static fronts with speeds proportional to external loading rates, via fronts much slower than the Rayleigh wave speed, and fronts that propagate near the Rayleigh wave speed, to fronts that travel faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic 2D spring--block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that a proportionality between material slip speed and rupture front speed, previously reported for slow fronts, actually holds across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even in homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Lastly, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically-based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.Comment: 29 pages, 21 figure

    Damage mechanisms in the dynamic fracture of nominally brittle polymers

    Get PDF
    Linear Elastic Fracture Mechanics (LEFM) provides a consistent framework to evaluate quantitatively the energy flux released to the tip of a growing crack. Still, the way in which the crack selects its velocity in response to this energy flux remains far from completely understood. To uncover the underlying mechanisms, we experimentally studied damage and dissipation processes that develop during the dynamic failure of polymethylmethacrylate (PMMA), classically considered as the archetype of brittle amorphous materials. We evidenced a well-defined critical velocity along which failure switches from nominally-brittle to quasi-brittle, where crack propagation goes hand in hand with the nucleation and growth of microcracks. Via post-mortem analysis of the fracture surfaces, we were able to reconstruct the complete spatiotemporal microcracking dynamics with micrometer/nanosecond resolution. We demonstrated that the true local propagation speed of individual crack fronts is limited to a fairly low value, which can be much smaller than the apparent speed measured at the continuum-level scale. By coalescing with the main front, microcracks boost the macroscale velocity through an acceleration factor of geometrical origin. We discuss the key role of damage-related internal variables in the selection of macroscale fracture dynamics.Comment: 18 pages, 21 figures, to appear in International Journal of Fractur

    Contact with coupled adhesion and friction: Computational framework, applications, and new insights

    Full text link
    Contact involving soft materials often combines dry adhesion, sliding friction, and large deformations. At the local level, these three aspects are rarely captured simultaneously, but included in the theoretical models by Mergel et al. (2019). We here develop a corresponding finite element framework that captures 3D finite-strain contact of two deformable bodies. This framework is suitable to investigate sliding friction even under tensile normal loads. First, we demonstrate the capabilities of our finite element model using both 2D and 3D test cases, which range from compliant tapes to structures with high stiffness, and include deformable-rigid and deformable-deformable contact. We then provide new results on the onset of sliding of smooth elastomer-glass interfaces, a setup that couples nonlinear material behavior, adhesion, and large frictional stresses. Our simulations not only agree well with both experimental and theoretical findings, they also provide new insights into the current debate on the shear-induced reduction of the contact area in elastomeric contact
    • …
    corecore